skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramprassad, Manav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks, including the Transformer architecture, have achieved remarkable performance in various time series tasks. However, their effectiveness in handling clinical time series data is hindered by specific challenges: 1) Sparse event sequences collected asynchronously with multivariate time series, and 2) Limited availability of labeled data. To address these challenges, we propose Our code is available at https://github.com/SigmaTsing/TransEHR.git . , a self-supervised Transformer model designed to encode multi-sourced asynchronous sequential data, such as structured Electronic Health Records (EHRs), efficiently. We introduce three pretext tasks for pre-training the Transformer model, utilizing large amounts of unlabeled structured EHR data, followed by fine-tuning on downstream prediction tasks using the limited labeled data. Through extensive experiments on three real-world health datasets, we demonstrate that our model achieves state-of-the-art performance on benchmark clinical tasks, including in-hospital mortality classification, phenotyping, and length-of-stay prediction. Our findings highlight the efficacy of in effectively addressing the challenges associated with clinical time series data, thus contributing to advancements in healthcare analytics. 
    more » « less